POSITIVE AIRWAY PRESSURE THERAPY ADHERENCE AND OUTCOMES IN OBSTRUCTIVE SLEEP APNEA: AN EXPLORATORY STUDY

Kathy Spurr, RRT, FCSRT, MHI ${ }^{1}$; Debra Morrison, MD, FRCPC ${ }^{2,3}$; Michaela Title, BSc ${ }^{4}$; Daniel Stevens, PhD ${ }^{4}$

1. School of Health Sciences, Faculty of Health, Dalhousie University, Halifax, NS, Canada; 2. Department of Medicine, Dalhousie University, Halifax, NS, Canada; 3. Sleep Clinic and Laboratory, QEII Health Sciences Centre, NS Health, Halifax, NS, Canada; 4. School of Health and Human Performance, Division of Kinesiology, Faculty of Health, Dalhousie University, Halifax, NS, Canada.

Introduction

Positive airway pressure (PAP) therapy is frequently administered by respiratory therapists to patients with obstructive sleep apnea (OSA).
In patients with OSA, PAP therapy has shown to significantly reduce daytime sleepiness and hypertension; improve quality of life measures;[1] [2] and decrease morbidity and mortality in patients with coexisting heart failure, hypertension, and myocardial ischemia and infarction.[3] [4]
PAP therapy adherence is often defined as PAP usage of ≥ 4 hours per night on 70% of nights, for at least 30 consecutive days[5].

- Little evidence exists to support this definition for PAP therapy adherence
- Advances in PAP therapy devices have allowed more accurate and detailed data to be recorded and downloaded by the clinician with removable data cards and/or Bluetooth technology.
- Despite widespread usage of PAP therapy in the clinical management of OSA, there are no established guidelines regarding the wear time duration needed to discern meaningful patient benefits.[6]

Objectives

- Primary: to compare outcomes including mortality, hospitalizations, and development of comorbidities over an 8-year period, between OSA patients who are adherent (PAP usage ≥ 4 hours on $\geq 70 \%$ of nights) and non-adherent (PAP usage ≤ 3 hours on $\leq 50 \%$ of nights) to PAP therapy treatment.
Secondary: to investigate the associations between PAP adherence and patient characteristics and outcomes.

Table 1. Characteristics of PAP therapy adherent and non-adherent groups at first follow-up

	Adherent $(\mathrm{n}=50)$	\% or Std	Non-adherent $(\mathrm{n}=50)$	$\%$ or Std	p-value
Age $(\mathrm{y})^{*}$	59.5	13.1	57.8	12.1	0.400
Sex, men	38	76	29	58	0.0056
BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)^{*}$	36.2	9.1	35.1	8.6	0.746
Obese	37	74	33	66	0.383
Charlson index*	1.1	1.8	0.6	1.0	0.638
Smoking history	32	64	26	52	0.224
Past tonsil/					
adenoidectomy	11	22	13	26	0.640
ESS score*	9.2	5.8	11.8	6.0	0.030
OSA diagnosis method				0.880	
PSG	16	32	13	26	
PM COMM	23	46	27	54	
PM LAB	7	14	6	12	
Events/hour*	43.7	40.4	37.8	27.4	0.552
PAP therapy type					0.656
BiPAP	13	26	15	30	
CPAP	37	74	35	70	
Location at start of therapy				0.545	
Home	29	58	33	66	
Hospital/Lab	20	40	15	30	
Time to first $f /$ / *	22.2	51.6	16.7	23.3	0.814

*Denotes continuous variables; Bold font denotes significance ($p<0.05$); ESS, Epworth Sleepiness Scale; OSA, obstructive sleep apnea; PSG, polysomnography; PAP, positive airway pressure; BiPAP, bilevel positive airway pressure; CPAP, continuous positive airway pressure.
Figure 1. Comorbidities of PAP therapy adherent and nonadherent groups at first follow-up

Results

Table 2. Outcomes of the PAP therapy adherent and non-adherent groups during the 8 -year study duration

	Adherent ($n=50$)	\% or Std	Non-adherent ($\mathrm{n}=50$)	\% or Std	p-value
Death	7	14	<5	<10	0.338
Death in hospital	6	12	<5	<10	0.269
Number of hospitalizations*	2.9	4.5	3.1	4.2	0.647
Length of stay in hospital (days)*	6.4	10.5	4.5	4.7	0.944
Number of comorbidities*	3.2	2.0	3.1	2.0	0.769

Epworth sleepiness score and sex were significantly different between groups at first follow-up (Table 1).

- No significant differences were shown between groups for mortality, hospitalizations, or development of co-morbidities during the 8 -year observation period (Table 2).
Male patients had a significant increase in odds of being adherent (Table 3).
Adherent group showed a significant decrease in odds of reporting higher normal daytime sleepiness (Table 3).
An increasing number of hospitalizations corresponded with a significant decrease in odds of being adherent (Table 3).

Acknowledgements

- Dr. Allison Keeping for PAP device data extraction.
- Dr. Ali AlMusawi for contribution to research design.

Table 3. Logistic regression analysis (PAP therapy adherent vs. non-adherent)

	Odds Ratio	95\% CI	p-value
Sex (male)	8.519	$\begin{aligned} & 1.301- \\ & 55.756 \end{aligned}$	0.025
ESS Score [Ref 0-5 (Lower Normal Daytime Sleepiness)]			
Higher normal daytime sleepiness (6-10)	0.039	$\begin{gathered} 0.005- \\ 0.392 \end{gathered}$	0.003
Mild excessive daytime sleepiness (11-12)	0.039	$\begin{gathered} 0.003- \\ 0.517 \end{gathered}$	0.014
Severe excessive daytime sleepiness (16-24)	0.088	$\begin{gathered} 0.012- \\ 0.635 \end{gathered}$	0.016
Hospitalization counts	0.741	$\begin{gathered} 0.551- \\ 0.995 \end{gathered}$	0.046

Conclusions

- One specific definition of PAP adherence may not be appropriate for various phenotypes of OSA.
Different clinical outcomes may require different PAP usage times and patterns.
- Due to retrospective analysis and small group size, further studies are necessary to investigate clinically meaningful criteria for PAP therapy adherence.

REFERENCES

[1] Weaver TE, Chasens ER. Continuous positive airway pressure treatment for sleep apnea in older adults. Sleep Med. Rev. 2007.
R2]. Patil SP, Ayappa IA, Caples SM, et al. Treatment of adult obstructive sleep apnea with positive airway pressure: An American academy of sleep medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2019.
${ }^{[3]}$ Somers VK, White DP, Amin R, et al. Sleep Apnea and Cardiovascular Disease. An American Heart Association/American College of Cardiology Foundation Scientific Statement From the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on .J. Am. Coll. Cardiol. 2008 [4] Kaneko Y,FIoras JS, Usui k, et al. Cardiovascular Effects of Continuous Positive Airway Pressure in Patients with Hear
Failure and Obstructive Sleen Apnea. . Engl I Med. 2003 Failure and Obsth US, Us K Medicaid Sevices No Title
${ }^{15}$ C Centers for Medicare \& Medicaid Services. No Titte. Medicare Natt. Cover. Determ. Manual. Chapter 1, part 4 [6] Oh A, Grivell N, Cha Sleep Med. Clin. 2021.

